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Figure 1   Concept of instability line (reproduced from Take et al, 2004) 
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Figure 2    Behaviour of soil element on failure surface 

(reproduced from HKIE, 2003) 
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Figure 3    Constant – q test 
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Figure 4    Stress state of soil element in loose fill (a) behind retaining wall  

(b) on steep slope and (c) on gentle slope 
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Figure 5    Design of soil nails in loose fill based on HKIE report 
(reproduced from HKIE, 2003) 

(b)   Layout of surface grillage & soil nails 

 

(a)   Design surface pressure on slope 
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Figure 6    Support of grillage beam / shotcrete by micro piles 
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Figure 7    Unconfined compression strength against cement content for 
decomposed granite (reproduced from Li, 1983) 
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Figure 8    Critical dry density versus cement content for Hong Kong soils 
(reproduced from Woo, 1981) 
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Appendix  1 : rate of shearing in a constant-q test 
 
Both the axial and volumetric strain behaviour of a soil are governed by η and dη where η = 
q/p′, q = σ1 − σ3 and p′= (σ1  + 2σ3)/3.  In general, we have (simply by differentiation) the 
following relation: 
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For constant-q test, dq=0 and therefore: p
p

′
′

−= dd ηη  

Therefore, shearing as represented by increase in η is achieved by ramping down the cell 
pressure. The rate of shearing is thus given by:   
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where dp′/dt =  rate of ramping down the cell pressure. Since dp′ < 0 and dη > 0 in a constant-
q test, dη/dt will occur at an ever increasing rate even if dp′/dt is maintained at a constant 
“small” value.   
 
For example, for an initial stress state of major and minor principal stresses of 200 and 100 
respectively and if matric suction increases the equivalent effective stress by 75 kPa, qA = 100 
and p′A = 208.33. Even with a “very slow” ramping rate of 1 kPa/min, dη/dt will reach 0.013 
(i.e. ~5.5 times the initial dη/dt) and η = 1.132 (taking a mobilised friction angle of ~28o) 
after 120 minutes.  This is a fast rate of shearing for a stress-controlled test at high η-value. 
This concept is further explained in Figure A1. The ramping of cell pressure is performed at 
discrete steps and with each step corresponding to either the accuracy of the pressure 
transducer and/or the control, which is generally 0.5 kPa.  This means the actual dη/dt is 
much higher than the calculated value based on an ideal and smooth ramping rate of 1 
kPa/min.  In another word, the specimen will eventually be subjected to pulses of very fast 
shearing. 
 
Before the core of the specimen attain an undrained behaviour, i.e. the whole specimen is 
drained.   But the very high rate of strain generated may drive the core of the specimen into an 
undrained state. 
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Note: css = qss /2 
 

Path Constant q test Field 

A start of ramping down 
of cell pressure 

start of wetting 

A → A 
or (A → B) 

drained throughout 
specimen 

gradual loss of matric 
suction 

B Ill-defined state jumping into undrained shearing 
because dη /dt is high and η is high. 

B → C core of specimen in 
undrained state 

- 

 

Figure A1 
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Appendix 2 : Uniqueness of effective stress path in undrained shearing 
 
An undrained condition is mathematically defined by dεvol = 0.  For a soil element under 
shearing, the strain increment can be decomposed into an elastic and a plastic component.  
Therefore, undrained shearing MUST obey: 
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where superscripts “e” and “p” denote elastic and plastic components respectively. 
Theoretically, there is a subtle approximation here.  We neglect the so-called elasto-plastic 
coupling which can be important if many cycles of load repetitions are involved. 
 
If we accept effective stress principle: 
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Undrained shearing can be expressed as: 
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Simplifying: 
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Although the terms of [D]e and [D]p are complicated functions of effective stress state (q, p′, 
and Lode angle), they are independent of dq/dp′.  For triaxial condition, [D]e and [D]p are 2×2 
matrices.     
 
For any triaxial compression mode (ie, 1 major and two minor principal stresses) and Lode 
angle = 0, the above equation can be solved by stepping dp′ or dq. The solution is the 
effective stress path in undrained shearing. Re-iterating that [D]e and [D]p are independent of 
dq/dp′, the mathematics ensures that for a given initial stress state, the solution will generate a 
single curve.  
 
To put it in another way, whether it is conventional triaxial compression (dq/dp = 1/3), or 
other tests with any value of dq/dp (including the case of zero for constant-q test), we have the 
same answer.  
 
This concept is further explained in Figure A2. 
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Effective stress path BC is approximately same as effective stress path 
B′C′ if we configure the test so that B and B′ corresponds to each 
other. Hence qss/p′ is the same for both tests. p′ is can also be related to 
initial effective stress. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 

Figure A2 


